Slippery substrates impair ATP-dependent protease function by slowing unfolding.

نویسنده

  • Daniel A Kraut
چکیده

ATP-dependent proteases are responsible for most energy-dependent protein degradation across all species. Proteases initially bind an unstructured region on a substrate and then translocate along the polypeptide chain, unfolding and degrading protein domains as they are encountered. Although this process is normally processive, resulting in the complete degradation of substrate proteins to small peptides, some substrates are released prematurely. Regions of low sequence complexity within the substrate such as the glycine-rich region (GRR) from p105 or glycine-alanine repeats (GAr) from the EBNA1 (Epstein-Barr virus nuclear antigen-1) protein, can trigger partial degradation and fragment release. Loss of processivity could be due to inability to hold on to the substrate (faster release) or inability to unfold and degrade a substrate domain (slower unfolding). I previously showed that the GRR slows domain unfolding by the proteasome (Kraut, D. A., Israeli, E., Schrader, E. K., Patil, A., Nakai, K., Nanavati, D., Inobe, T., and Matouschek, A. (2012) ACS Chem. Biol. 7, 1444-1453). In contrast, a recently published study concluded that GArs increase the rate of substrate release from ClpXP, a bacterial ATP-dependent protease (Too, P. H., Erales, J., Simen, J. D., Marjanovic, A., and Coffino, P. (2013) J. Biol. Chem. 288, 13243-13257). Here, I show that these apparently contradictory results can be reconciled through a reanalysis of the ClpXP GAr data. This reanalysis shows that, as with the proteasome, low complexity sequences in substrates slow their unfolding and degradation by ClpXP, with little effect on release rates. Thus, despite their evolutionary distance and limited sequence identity, both ClpXP and the proteasome share a common mechanism by which substrate sequences regulate the processivity of degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanisms of Substrate Recognition by the AAA+ Protease HslUV

Protein degradation is a central component of all biological processes. The proteome must constantly change in response to environmental stimuli. As a result, protein synthesis and regulated proteolysis are vital to cell survival. In Escherichia coli, the protease HslUV is one of five ATP-dependent proteases that shoulder the major burden of intracellular protein degradation. Although ample dat...

متن کامل

Single-molecule denaturation and degradation of proteins by the AAA+ ClpXP protease.

ClpXP is an ATP-fueled molecular machine that unfolds and degrades target proteins. ClpX, an AAA+ enzyme, recognizes specific proteins, and then uses cycles of ATP hydrolysis to denature any native structure and to translocate the unfolded polypeptide into ClpP for degradation. Here, we develop and apply single-molecule fluorescence assays to probe the kinetics of protein denaturation and degra...

متن کامل

The ClpXP Protease Unfolds Substrates Using a Constant Rate of Pulling but Different Gears

ATP-dependent proteases are vital to maintain cellular protein homeostasis. Here, we study the mechanisms of force generation and intersubunit coordination in the ClpXP protease from E. coli to understand how these machines couple ATP hydrolysis to mechanical protein unfolding. Single-molecule analyses reveal that phosphate release is the force-generating step in the ATP-hydrolysis cycle and th...

متن کامل

ATP-dependent proteases differ substantially in their ability to unfold globular proteins.

ATP-dependent proteases control the concentrations of hundreds of regulatory proteins and remove damaged or misfolded proteins from cells. They select their substrates primarily by recognizing sequence motifs or covalent modifications. Once a substrate is bound to the protease, it has to be unfolded and translocated into the proteolytic chamber to be degraded. Some proteases appear to be promis...

متن کامل

Loops in the Central Channel of ClpA Chaperone Mediate Protein Binding, Unfolding, and Translocation

The cylindrical Hsp100 chaperone ClpA mediates ATP-dependent unfolding of substrate proteins bearing "tag" sequences, such as the 11-residue ssrA sequence appended to proteins translationally stalled at ribosomes. Unfolding is coupled to translocation through a central channel into the associating protease, ClpP. To explore the topology and mechanism of ClpA action, we carried out chemical cros...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 289 6  شماره 

صفحات  -

تاریخ انتشار 2013